The sum of last eigth coefficients in the expansion of $(1 + x)^{15}$ is :-
$2^{15}$
$2^{14}$
$2^{16}$
$2^8$
If ${S_n} = \sum\limits_{r = 0}^n {\frac{1}{{^n{C_r}}}} $ and ${t_n} = \sum\limits_{r = 0}^n {\frac{r}{{^n{C_r}}}} $, then $\frac{{{t_n}}}{{{S_n}}}$ is equal to
$2{C_0} + \frac{{{2^2}}}{2}{C_1} + \frac{{{2^3}}}{3}{C_2} + .... + \frac{{{2^{11}}}}{{11}}{C_{10}}$ = . . .
Let $\alpha=\sum_{k=0}^n\left(\frac{\left({ }^n C_k\right)^2}{k+1}\right)$ and $\beta=\sum_{k=0}^{n-1}\left(\frac{{ }^n C_k{ }^n C_{k+1}}{k+2}\right)$. If $5 \alpha=6 \beta$, then $n$ equals
Let $X =\left({ }^{10} C _1\right)^2+2\left({ }^{10} C _2\right)^2+3\left({ }^{10} C _3\right)^2+\ldots \ldots . .+10\left({ }^{10} C _{10}\right)^2$ where ${ }^{10} C _{ r }, r \in\{1,2, \ldots ., 10\}$ denote binomial coefficients. Then, the value of $\frac{1}{1430} X$ is. . . . . . .
The value of $-{ }^{15} C _{1}+2 .{ }^{15} C _{2}-3 .{ }^{15} C _{3}+\ldots \ldots$ $-15 .{ }^{15} C _{15}+{ }^{14} C _{1}+{ }^{14} C _{3}+{ }^{14} C _{5}+\ldots .+{ }^{14} C _{11}$ is